Dersler

View on GitHub

Veri setini indirmek için tıklayınız.

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
import tensorflow as tf
from tensorflow import keras
# Veri Yükleme
df = pd.read_csv('06_AirPassengers.csv')

# Sütun isimlerini kontrol et
print(df.columns)
Index(['Month', '#Passengers'], dtype='object')
df['Month'] = pd.to_datetime(df['Month'])
df.set_index('Month', inplace=True) 
plt.plot(df['#Passengers'])
plt.show()

png

# Veriyi numpy array'e çevirme
dataset=df["#Passengers"].to_numpy()
dataset
array([112, 118, 132, 129, 121, 135, 148, 148, 136, 119, 104, 118, 115,
       126, 141, 135, 125, 149, 170, 170, 158, 133, 114, 140, 145, 150,
       178, 163, 172, 178, 199, 199, 184, 162, 146, 166, 171, 180, 193,
       181, 183, 218, 230, 242, 209, 191, 172, 194, 196, 196, 236, 235,
       229, 243, 264, 272, 237, 211, 180, 201, 204, 188, 235, 227, 234,
       264, 302, 293, 259, 229, 203, 229, 242, 233, 267, 269, 270, 315,
       364, 347, 312, 274, 237, 278, 284, 277, 317, 313, 318, 374, 413,
       405, 355, 306, 271, 306, 315, 301, 356, 348, 355, 422, 465, 467,
       404, 347, 305, 336, 340, 318, 362, 348, 363, 435, 491, 505, 404,
       359, 310, 337, 360, 342, 406, 396, 420, 472, 548, 559, 463, 407,
       362, 405, 417, 391, 419, 461, 472, 535, 622, 606, 508, 461, 390,
       432], dtype=int64)
# Eğitim ve test setlerine ayırma
train_size = int(len(dataset) * 0.75)
test_size = len(dataset) - train_size
train = dataset[0:train_size].reshape((-1, 1))
test = dataset[train_size:].reshape((-1, 1))
# Veriyi ölçeklendirme
scaler = MinMaxScaler()
train_scaled = scaler.fit_transform(train)
test_scaled = scaler.transform(test)
# Zaman serisi veri üretme fonksiyonu
def time_series_sequences(data: np.ndarray, window_size: int):
    X, y = [], []
    for i in range(len(data) - window_size):
        X.append(data[i:i + window_size].flatten())  # Tek boyutlu hale getir
        y.append(data[i + window_size].flatten())  # Çıkış değeri
    return np.array(X), np.array(y)
# Pencere boyutu
window_size = 10
X_train, y_train = time_series_sequences(train_scaled, window_size)
X_test, y_test = time_series_sequences(test_scaled, window_size)


X_train.shape, y_train.shape, X_test.shape, y_test.shape
((98, 10), (98, 1), (26, 10), (26, 1))
X_train[:3], y_train[:3]
(array([[0.02203857, 0.03856749, 0.07713499, 0.06887052, 0.04683196,
         0.08539945, 0.12121212, 0.12121212, 0.08815427, 0.04132231],
        [0.03856749, 0.07713499, 0.06887052, 0.04683196, 0.08539945,
         0.12121212, 0.12121212, 0.08815427, 0.04132231, 0.        ],
        [0.07713499, 0.06887052, 0.04683196, 0.08539945, 0.12121212,
         0.12121212, 0.08815427, 0.04132231, 0.        , 0.03856749]]),
 array([[0.        ],
        [0.03856749],
        [0.03030303]]))

Model 1

# Model oluşturma
model = keras.models.Sequential([
    keras.layers.Input(shape=(window_size,1)),
    keras.layers.SimpleRNN(32, activation='relu'),
    keras.layers.Dense(1)  # Çıkışta lineer aktivasyon
])

model.summary()
Model: "sequential_2"
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━┓
┃ Layer (type)                          Output Shape                         Param # ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━┩
│ simple_rnn_2 (SimpleRNN)             │ (None, 32)                  │           1,088 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ dense_2 (Dense)                      │ (None, 1)                   │              33 │
└──────────────────────────────────────┴─────────────────────────────┴─────────────────┘
 Total params: 1,121 (4.38 KB)
 Trainable params: 1,121 (4.38 KB)
 Non-trainable params: 0 (0.00 B)
model.compile(optimizer = 'adam',
             loss = 'mse',
             metrics = ['accuracy'])
# Modeli eğitme
history = model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=100)
Epoch 1/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 2s 98ms/step - accuracy: 0.0041 - loss: 0.2497 - val_accuracy: 0.0000e+00 - val_loss: 0.8502
Epoch 2/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0062 - loss: 0.1548 - val_accuracy: 0.0000e+00 - val_loss: 0.5817
Epoch 3/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0155 - loss: 0.0983 - val_accuracy: 0.0000e+00 - val_loss: 0.3677
Epoch 4/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0062 - loss: 0.0591 - val_accuracy: 0.0000e+00 - val_loss: 0.1980
Epoch 5/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.0093 - loss: 0.0335 - val_accuracy: 0.0000e+00 - val_loss: 0.0736
Epoch 6/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.0186 - loss: 0.0135 - val_accuracy: 0.0000e+00 - val_loss: 0.0438
Epoch 7/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0186 - loss: 0.0178 - val_accuracy: 0.0000e+00 - val_loss: 0.0446
Epoch 8/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0217 - loss: 0.0169 - val_accuracy: 0.0000e+00 - val_loss: 0.0330
Epoch 9/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0186 - loss: 0.0094 - val_accuracy: 0.0000e+00 - val_loss: 0.0444
Epoch 10/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0217 - loss: 0.0091 - val_accuracy: 0.0000e+00 - val_loss: 0.0548
Epoch 11/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0196 - loss: 0.0116 - val_accuracy: 0.0000e+00 - val_loss: 0.0534
Epoch 12/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0155 - loss: 0.0091 - val_accuracy: 0.0000e+00 - val_loss: 0.0410
Epoch 13/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0217 - loss: 0.0090 - val_accuracy: 0.0000e+00 - val_loss: 0.0271
Epoch 14/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.0155 - loss: 0.0072 - val_accuracy: 0.0000e+00 - val_loss: 0.0253
Epoch 15/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 15ms/step - accuracy: 0.0217 - loss: 0.0070 - val_accuracy: 0.0000e+00 - val_loss: 0.0260
Epoch 16/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0217 - loss: 0.0074 - val_accuracy: 0.0000e+00 - val_loss: 0.0266
Epoch 17/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.0123 - loss: 0.0071 - val_accuracy: 0.0000e+00 - val_loss: 0.0293
Epoch 18/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0248 - loss: 0.0072 - val_accuracy: 0.0000e+00 - val_loss: 0.0319
Epoch 19/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0186 - loss: 0.0069 - val_accuracy: 0.0000e+00 - val_loss: 0.0294
Epoch 20/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0217 - loss: 0.0067 - val_accuracy: 0.0000e+00 - val_loss: 0.0247
Epoch 21/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0155 - loss: 0.0069 - val_accuracy: 0.0000e+00 - val_loss: 0.0226
Epoch 22/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0311 - loss: 0.0068 - val_accuracy: 0.0000e+00 - val_loss: 0.0223
Epoch 23/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.0134 - loss: 0.0070 - val_accuracy: 0.0000e+00 - val_loss: 0.0237
Epoch 24/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0217 - loss: 0.0056 - val_accuracy: 0.0000e+00 - val_loss: 0.0285
Epoch 25/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0155 - loss: 0.0073 - val_accuracy: 0.0000e+00 - val_loss: 0.0281
Epoch 26/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0123 - loss: 0.0052 - val_accuracy: 0.0000e+00 - val_loss: 0.0249
Epoch 27/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.0155 - loss: 0.0059 - val_accuracy: 0.0000e+00 - val_loss: 0.0219
Epoch 28/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.0217 - loss: 0.0061 - val_accuracy: 0.0000e+00 - val_loss: 0.0205
Epoch 29/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0123 - loss: 0.0061 - val_accuracy: 0.0000e+00 - val_loss: 0.0203
Epoch 30/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.0248 - loss: 0.0055 - val_accuracy: 0.0000e+00 - val_loss: 0.0202
Epoch 31/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0248 - loss: 0.0054 - val_accuracy: 0.0000e+00 - val_loss: 0.0201
Epoch 32/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.0217 - loss: 0.0058 - val_accuracy: 0.0000e+00 - val_loss: 0.0202
Epoch 33/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0123 - loss: 0.0051 - val_accuracy: 0.0000e+00 - val_loss: 0.0188
Epoch 34/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0134 - loss: 0.0053 - val_accuracy: 0.0000e+00 - val_loss: 0.0225
Epoch 35/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.0123 - loss: 0.0064 - val_accuracy: 0.0000e+00 - val_loss: 0.0177
Epoch 36/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.0248 - loss: 0.0049 - val_accuracy: 0.0000e+00 - val_loss: 0.0185
Epoch 37/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.0311 - loss: 0.0061 - val_accuracy: 0.0000e+00 - val_loss: 0.0176
Epoch 38/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.0123 - loss: 0.0051 - val_accuracy: 0.0000e+00 - val_loss: 0.0165
Epoch 39/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0155 - loss: 0.0047 - val_accuracy: 0.0000e+00 - val_loss: 0.0168
Epoch 40/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0155 - loss: 0.0050 - val_accuracy: 0.0000e+00 - val_loss: 0.0163
Epoch 41/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.0248 - loss: 0.0047 - val_accuracy: 0.0000e+00 - val_loss: 0.0154
Epoch 42/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0155 - loss: 0.0043 - val_accuracy: 0.0000e+00 - val_loss: 0.0153
Epoch 43/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0155 - loss: 0.0046 - val_accuracy: 0.0000e+00 - val_loss: 0.0145
Epoch 44/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0155 - loss: 0.0044 - val_accuracy: 0.0000e+00 - val_loss: 0.0143
Epoch 45/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0217 - loss: 0.0048 - val_accuracy: 0.0000e+00 - val_loss: 0.0140
Epoch 46/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0123 - loss: 0.0041 - val_accuracy: 0.0000e+00 - val_loss: 0.0155
Epoch 47/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0248 - loss: 0.0045 - val_accuracy: 0.0000e+00 - val_loss: 0.0167
Epoch 48/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0155 - loss: 0.0045 - val_accuracy: 0.0000e+00 - val_loss: 0.0132
Epoch 49/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0123 - loss: 0.0039 - val_accuracy: 0.0000e+00 - val_loss: 0.0133
Epoch 50/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.0248 - loss: 0.0043 - val_accuracy: 0.0000e+00 - val_loss: 0.0160
Epoch 51/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.0186 - loss: 0.0048 - val_accuracy: 0.0000e+00 - val_loss: 0.0119
Epoch 52/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.0155 - loss: 0.0037 - val_accuracy: 0.0000e+00 - val_loss: 0.0124
Epoch 53/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0248 - loss: 0.0043 - val_accuracy: 0.0000e+00 - val_loss: 0.0116
Epoch 54/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.0155 - loss: 0.0036 - val_accuracy: 0.0000e+00 - val_loss: 0.0115
Epoch 55/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0102 - loss: 0.0033 - val_accuracy: 0.0000e+00 - val_loss: 0.0112
Epoch 56/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0186 - loss: 0.0040 - val_accuracy: 0.0000e+00 - val_loss: 0.0107
Epoch 57/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0311 - loss: 0.0034 - val_accuracy: 0.0000e+00 - val_loss: 0.0106
Epoch 58/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0155 - loss: 0.0036 - val_accuracy: 0.0000e+00 - val_loss: 0.0102
Epoch 59/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0248 - loss: 0.0031 - val_accuracy: 0.0000e+00 - val_loss: 0.0110
Epoch 60/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0123 - loss: 0.0036 - val_accuracy: 0.0000e+00 - val_loss: 0.0095
Epoch 61/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0217 - loss: 0.0038 - val_accuracy: 0.0000e+00 - val_loss: 0.0243
Epoch 62/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0155 - loss: 0.0059 - val_accuracy: 0.0000e+00 - val_loss: 0.0135
Epoch 63/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.0248 - loss: 0.0033 - val_accuracy: 0.0000e+00 - val_loss: 0.0171
Epoch 64/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.0248 - loss: 0.0060 - val_accuracy: 0.0000e+00 - val_loss: 0.0169
Epoch 65/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0217 - loss: 0.0042 - val_accuracy: 0.0000e+00 - val_loss: 0.0115
Epoch 66/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.0155 - loss: 0.0037 - val_accuracy: 0.0000e+00 - val_loss: 0.0172
Epoch 67/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.0217 - loss: 0.0043 - val_accuracy: 0.0000e+00 - val_loss: 0.0098
Epoch 68/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0248 - loss: 0.0034 - val_accuracy: 0.0000e+00 - val_loss: 0.0104
Epoch 69/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0155 - loss: 0.0032 - val_accuracy: 0.0000e+00 - val_loss: 0.0099
Epoch 70/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0311 - loss: 0.0028 - val_accuracy: 0.0000e+00 - val_loss: 0.0095
Epoch 71/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.0123 - loss: 0.0029 - val_accuracy: 0.0000e+00 - val_loss: 0.0133
Epoch 72/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0248 - loss: 0.0037 - val_accuracy: 0.0000e+00 - val_loss: 0.0090
Epoch 73/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0248 - loss: 0.0027 - val_accuracy: 0.0000e+00 - val_loss: 0.0170
Epoch 74/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0123 - loss: 0.0050 - val_accuracy: 0.0000e+00 - val_loss: 0.0117
Epoch 75/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0123 - loss: 0.0031 - val_accuracy: 0.0000e+00 - val_loss: 0.0087
Epoch 76/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.0123 - loss: 0.0027 - val_accuracy: 0.0000e+00 - val_loss: 0.0106
Epoch 77/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.0248 - loss: 0.0032 - val_accuracy: 0.0000e+00 - val_loss: 0.0082
Epoch 78/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.0217 - loss: 0.0026 - val_accuracy: 0.0000e+00 - val_loss: 0.0082
Epoch 79/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0123 - loss: 0.0025 - val_accuracy: 0.0000e+00 - val_loss: 0.0092
Epoch 80/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.0155 - loss: 0.0028 - val_accuracy: 0.0000e+00 - val_loss: 0.0069
Epoch 81/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0248 - loss: 0.0024 - val_accuracy: 0.0000e+00 - val_loss: 0.0068
Epoch 82/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0248 - loss: 0.0023 - val_accuracy: 0.0000e+00 - val_loss: 0.0067
Epoch 83/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0155 - loss: 0.0023 - val_accuracy: 0.0000e+00 - val_loss: 0.0067
Epoch 84/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0123 - loss: 0.0024 - val_accuracy: 0.0000e+00 - val_loss: 0.0072
Epoch 85/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.0248 - loss: 0.0025 - val_accuracy: 0.0000e+00 - val_loss: 0.0064
Epoch 86/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.0155 - loss: 0.0021 - val_accuracy: 0.0000e+00 - val_loss: 0.0062
Epoch 87/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.0248 - loss: 0.0021 - val_accuracy: 0.0000e+00 - val_loss: 0.0079
Epoch 88/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.0248 - loss: 0.0023 - val_accuracy: 0.0000e+00 - val_loss: 0.0056
Epoch 89/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0123 - loss: 0.0021 - val_accuracy: 0.0000e+00 - val_loss: 0.0054
Epoch 90/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0248 - loss: 0.0019 - val_accuracy: 0.0000e+00 - val_loss: 0.0073
Epoch 91/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0248 - loss: 0.0025 - val_accuracy: 0.0000e+00 - val_loss: 0.0060
Epoch 92/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0155 - loss: 0.0018 - val_accuracy: 0.0000e+00 - val_loss: 0.0061
Epoch 93/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0248 - loss: 0.0022 - val_accuracy: 0.0000e+00 - val_loss: 0.0057
Epoch 94/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0102 - loss: 0.0019 - val_accuracy: 0.0000e+00 - val_loss: 0.0062
Epoch 95/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0217 - loss: 0.0021 - val_accuracy: 0.0000e+00 - val_loss: 0.0053
Epoch 96/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.0186 - loss: 0.0018 - val_accuracy: 0.0000e+00 - val_loss: 0.0068
Epoch 97/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0311 - loss: 0.0020 - val_accuracy: 0.0000e+00 - val_loss: 0.0056
Epoch 98/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.0248 - loss: 0.0019 - val_accuracy: 0.0000e+00 - val_loss: 0.0105
Epoch 99/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0217 - loss: 0.0026 - val_accuracy: 0.0000e+00 - val_loss: 0.0054
Epoch 100/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0155 - loss: 0.0018 - val_accuracy: 0.0000e+00 - val_loss: 0.0101
# Tahmin yapma
trainPredict = model.predict(X_train)
testPredict = model.predict(X_test)
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 43ms/step
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 26ms/step
# Ters ölçeklendirme
trainPredict_unscaled = scaler.inverse_transform(trainPredict.reshape((-1, 1)))
testPredict_unscaled = scaler.inverse_transform(testPredict.reshape((-1, 1)))
# Grafik için boş arrayler oluşturma
trainPredictPlot = np.empty_like(dataset, dtype=float)
trainPredictPlot[:] = np.nan
trainPredictPlot[window_size:len(trainPredict) + window_size] = trainPredict_unscaled.flatten()
testPredict_unscaled.shape
(26, 1)
testPredictPlot = np.empty_like(dataset, dtype=float)
testPredictPlot[:] = np.nan
testPredictPlot[len(trainPredict) + (window_size * 2):] = testPredict_unscaled.flatten()
# Gerçek veri ve tahminleri çizdirme
plt.plot(dataset, label="Gerçek Veri")
plt.plot(trainPredictPlot, label="Eğitim Tahminleri")
plt.plot(testPredictPlot, label="Test Tahminleri")
plt.legend()
plt.show()

png

Model 2

# Model oluşturma
model = keras.models.Sequential([
    keras.layers.Input(shape=(window_size,1)),
    keras.layers.SimpleRNN(64, activation='relu'),
    keras.layers.Dense(1)  # Çıkışta lineer aktivasyon
])

model.summary()
Model: "sequential_5"
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━┓
┃ Layer (type)                          Output Shape                         Param # ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━┩
│ simple_rnn_5 (SimpleRNN)             │ (None, 64)                  │           4,224 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ dense_5 (Dense)                      │ (None, 1)                   │              65 │
└──────────────────────────────────────┴─────────────────────────────┴─────────────────┘
 Total params: 4,289 (16.75 KB)
 Trainable params: 4,289 (16.75 KB)
 Non-trainable params: 0 (0.00 B)
model.compile(optimizer = 'adam',
             loss = 'mse',
             metrics = ['accuracy'])
# Modeli eğitme
history = model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=100)
Epoch 1/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 2s 98ms/step - accuracy: 0.0155 - loss: 0.1827 - val_accuracy: 0.0000e+00 - val_loss: 0.6060
Epoch 2/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0155 - loss: 0.1131 - val_accuracy: 0.0000e+00 - val_loss: 0.3680
Epoch 3/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0062 - loss: 0.0753 - val_accuracy: 0.0000e+00 - val_loss: 0.2187
Epoch 4/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0155 - loss: 0.0395 - val_accuracy: 0.0000e+00 - val_loss: 0.1049
Epoch 5/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0123 - loss: 0.0150 - val_accuracy: 0.0000e+00 - val_loss: 0.0529
Epoch 6/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.0186 - loss: 0.0152 - val_accuracy: 0.0000e+00 - val_loss: 0.0479
Epoch 7/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.0217 - loss: 0.0136 - val_accuracy: 0.0000e+00 - val_loss: 0.0441
Epoch 8/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0248 - loss: 0.0108 - val_accuracy: 0.0000e+00 - val_loss: 0.0586
Epoch 9/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0155 - loss: 0.0115 - val_accuracy: 0.0000e+00 - val_loss: 0.0565
Epoch 10/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 15ms/step - accuracy: 0.0155 - loss: 0.0116 - val_accuracy: 0.0000e+00 - val_loss: 0.0397
Epoch 11/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0248 - loss: 0.0099 - val_accuracy: 0.0000e+00 - val_loss: 0.0347
Epoch 12/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.0311 - loss: 0.0104 - val_accuracy: 0.0000e+00 - val_loss: 0.0328
Epoch 13/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0155 - loss: 0.0081 - val_accuracy: 0.0000e+00 - val_loss: 0.0339
Epoch 14/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.0217 - loss: 0.0077 - val_accuracy: 0.0000e+00 - val_loss: 0.0432
Epoch 15/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.0155 - loss: 0.0091 - val_accuracy: 0.0000e+00 - val_loss: 0.0446
Epoch 16/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.0155 - loss: 0.0092 - val_accuracy: 0.0000e+00 - val_loss: 0.0341
Epoch 17/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.0248 - loss: 0.0069 - val_accuracy: 0.0000e+00 - val_loss: 0.0261
Epoch 18/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0248 - loss: 0.0081 - val_accuracy: 0.0000e+00 - val_loss: 0.0273
Epoch 19/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.0248 - loss: 0.0088 - val_accuracy: 0.0000e+00 - val_loss: 0.0272
Epoch 20/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0155 - loss: 0.0069 - val_accuracy: 0.0000e+00 - val_loss: 0.0391
Epoch 21/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.0186 - loss: 0.0073 - val_accuracy: 0.0000e+00 - val_loss: 0.0355
Epoch 22/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0311 - loss: 0.0075 - val_accuracy: 0.0000e+00 - val_loss: 0.0287
Epoch 23/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0248 - loss: 0.0068 - val_accuracy: 0.0000e+00 - val_loss: 0.0243
Epoch 24/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.0155 - loss: 0.0065 - val_accuracy: 0.0000e+00 - val_loss: 0.0238
Epoch 25/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0248 - loss: 0.0075 - val_accuracy: 0.0000e+00 - val_loss: 0.0230
Epoch 26/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.0155 - loss: 0.0067 - val_accuracy: 0.0000e+00 - val_loss: 0.0237
Epoch 27/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.0123 - loss: 0.0059 - val_accuracy: 0.0000e+00 - val_loss: 0.0253
Epoch 28/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.0217 - loss: 0.0056 - val_accuracy: 0.0000e+00 - val_loss: 0.0293
Epoch 29/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0248 - loss: 0.0063 - val_accuracy: 0.0000e+00 - val_loss: 0.0241
Epoch 30/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.0155 - loss: 0.0063 - val_accuracy: 0.0000e+00 - val_loss: 0.0219
Epoch 31/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0248 - loss: 0.0070 - val_accuracy: 0.0000e+00 - val_loss: 0.0197
Epoch 32/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.0155 - loss: 0.0055 - val_accuracy: 0.0000e+00 - val_loss: 0.0243
Epoch 33/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.0155 - loss: 0.0056 - val_accuracy: 0.0000e+00 - val_loss: 0.0205
Epoch 34/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.0123 - loss: 0.0055 - val_accuracy: 0.0000e+00 - val_loss: 0.0197
Epoch 35/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0248 - loss: 0.0061 - val_accuracy: 0.0000e+00 - val_loss: 0.0199
Epoch 36/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0155 - loss: 0.0054 - val_accuracy: 0.0000e+00 - val_loss: 0.0202
Epoch 37/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.0186 - loss: 0.0049 - val_accuracy: 0.0000e+00 - val_loss: 0.0192
Epoch 38/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.0311 - loss: 0.0058 - val_accuracy: 0.0000e+00 - val_loss: 0.0199
Epoch 39/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.0311 - loss: 0.0057 - val_accuracy: 0.0000e+00 - val_loss: 0.0178
Epoch 40/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.0248 - loss: 0.0052 - val_accuracy: 0.0000e+00 - val_loss: 0.0174
Epoch 41/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.0186 - loss: 0.0053 - val_accuracy: 0.0000e+00 - val_loss: 0.0205
Epoch 42/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.0248 - loss: 0.0059 - val_accuracy: 0.0000e+00 - val_loss: 0.0186
Epoch 43/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0155 - loss: 0.0044 - val_accuracy: 0.0000e+00 - val_loss: 0.0175
Epoch 44/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0311 - loss: 0.0050 - val_accuracy: 0.0000e+00 - val_loss: 0.0180
Epoch 45/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.0248 - loss: 0.0047 - val_accuracy: 0.0000e+00 - val_loss: 0.0160
Epoch 46/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.0311 - loss: 0.0041 - val_accuracy: 0.0000e+00 - val_loss: 0.0151
Epoch 47/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0134 - loss: 0.0042 - val_accuracy: 0.0000e+00 - val_loss: 0.0147
Epoch 48/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0248 - loss: 0.0041 - val_accuracy: 0.0000e+00 - val_loss: 0.0144
Epoch 49/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0186 - loss: 0.0038 - val_accuracy: 0.0000e+00 - val_loss: 0.0137
Epoch 50/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.0311 - loss: 0.0040 - val_accuracy: 0.0000e+00 - val_loss: 0.0121
Epoch 51/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0155 - loss: 0.0040 - val_accuracy: 0.0000e+00 - val_loss: 0.0114
Epoch 52/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.0186 - loss: 0.0036 - val_accuracy: 0.0000e+00 - val_loss: 0.0104
Epoch 53/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.0311 - loss: 0.0029 - val_accuracy: 0.0000e+00 - val_loss: 0.0126
Epoch 54/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.0248 - loss: 0.0036 - val_accuracy: 0.0000e+00 - val_loss: 0.0126
Epoch 55/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.0155 - loss: 0.0033 - val_accuracy: 0.0000e+00 - val_loss: 0.0114
Epoch 56/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0155 - loss: 0.0028 - val_accuracy: 0.0000e+00 - val_loss: 0.0112
Epoch 57/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0217 - loss: 0.0029 - val_accuracy: 0.0000e+00 - val_loss: 0.0108
Epoch 58/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.0123 - loss: 0.0031 - val_accuracy: 0.0000e+00 - val_loss: 0.0107
Epoch 59/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0186 - loss: 0.0030 - val_accuracy: 0.0000e+00 - val_loss: 0.0234
Epoch 60/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0186 - loss: 0.0047 - val_accuracy: 0.0000e+00 - val_loss: 0.0163
Epoch 61/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0123 - loss: 0.0029 - val_accuracy: 0.0000e+00 - val_loss: 0.0100
Epoch 62/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0311 - loss: 0.0030 - val_accuracy: 0.0000e+00 - val_loss: 0.0104
Epoch 63/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0217 - loss: 0.0027 - val_accuracy: 0.0000e+00 - val_loss: 0.0145
Epoch 64/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0186 - loss: 0.0028 - val_accuracy: 0.0000e+00 - val_loss: 0.0105
Epoch 65/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.0155 - loss: 0.0023 - val_accuracy: 0.0000e+00 - val_loss: 0.0095
Epoch 66/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.0217 - loss: 0.0022 - val_accuracy: 0.0000e+00 - val_loss: 0.0091
Epoch 67/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.0217 - loss: 0.0026 - val_accuracy: 0.0000e+00 - val_loss: 0.0142
Epoch 68/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0186 - loss: 0.0036 - val_accuracy: 0.0000e+00 - val_loss: 0.0097
Epoch 69/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0217 - loss: 0.0020 - val_accuracy: 0.0000e+00 - val_loss: 0.0114
Epoch 70/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0217 - loss: 0.0027 - val_accuracy: 0.0000e+00 - val_loss: 0.0091
Epoch 71/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.0217 - loss: 0.0019 - val_accuracy: 0.0000e+00 - val_loss: 0.0104
Epoch 72/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0248 - loss: 0.0021 - val_accuracy: 0.0000e+00 - val_loss: 0.0074
Epoch 73/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0123 - loss: 0.0018 - val_accuracy: 0.0000e+00 - val_loss: 0.0078
Epoch 74/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0123 - loss: 0.0019 - val_accuracy: 0.0000e+00 - val_loss: 0.0087
Epoch 75/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0123 - loss: 0.0018 - val_accuracy: 0.0000e+00 - val_loss: 0.0065
Epoch 76/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.0217 - loss: 0.0017 - val_accuracy: 0.0000e+00 - val_loss: 0.0066
Epoch 77/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0123 - loss: 0.0015 - val_accuracy: 0.0000e+00 - val_loss: 0.0067
Epoch 78/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.0217 - loss: 0.0017 - val_accuracy: 0.0000e+00 - val_loss: 0.0077
Epoch 79/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0248 - loss: 0.0015 - val_accuracy: 0.0000e+00 - val_loss: 0.0051
Epoch 80/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0217 - loss: 0.0016 - val_accuracy: 0.0000e+00 - val_loss: 0.0051
Epoch 81/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0217 - loss: 0.0012 - val_accuracy: 0.0000e+00 - val_loss: 0.0062
Epoch 82/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0186 - loss: 0.0010 - val_accuracy: 0.0000e+00 - val_loss: 0.0044
Epoch 83/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.0155 - loss: 0.0010 - val_accuracy: 0.0000e+00 - val_loss: 0.0041
Epoch 84/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0217 - loss: 9.5874e-04 - val_accuracy: 0.0000e+00 - val_loss: 0.0042
Epoch 85/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0155 - loss: 8.3109e-04 - val_accuracy: 0.0000e+00 - val_loss: 0.0042
Epoch 86/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 20ms/step - accuracy: 0.0123 - loss: 8.9809e-04 - val_accuracy: 0.0000e+00 - val_loss: 0.0040
Epoch 87/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0248 - loss: 8.6984e-04 - val_accuracy: 0.0000e+00 - val_loss: 0.0037
Epoch 88/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.0155 - loss: 8.3560e-04 - val_accuracy: 0.0000e+00 - val_loss: 0.0036
Epoch 89/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0186 - loss: 6.9463e-04 - val_accuracy: 0.0000e+00 - val_loss: 0.0039
Epoch 90/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.0248 - loss: 6.0597e-04 - val_accuracy: 0.0000e+00 - val_loss: 0.0035
Epoch 91/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.0248 - loss: 6.8947e-04 - val_accuracy: 0.0000e+00 - val_loss: 0.0038
Epoch 92/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0217 - loss: 6.8708e-04 - val_accuracy: 0.0000e+00 - val_loss: 0.0054
Epoch 93/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.0311 - loss: 8.8344e-04 - val_accuracy: 0.0000e+00 - val_loss: 0.0039
Epoch 94/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0123 - loss: 7.0213e-04 - val_accuracy: 0.0000e+00 - val_loss: 0.0055
Epoch 95/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0248 - loss: 0.0010 - val_accuracy: 0.0000e+00 - val_loss: 0.0045
Epoch 96/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0155 - loss: 6.7127e-04 - val_accuracy: 0.0000e+00 - val_loss: 0.0042
Epoch 97/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0217 - loss: 6.6740e-04 - val_accuracy: 0.0000e+00 - val_loss: 0.0041
Epoch 98/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.0217 - loss: 5.8730e-04 - val_accuracy: 0.0000e+00 - val_loss: 0.0036
Epoch 99/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.0155 - loss: 5.4916e-04 - val_accuracy: 0.0000e+00 - val_loss: 0.0041
Epoch 100/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.0311 - loss: 6.8634e-04 - val_accuracy: 0.0000e+00 - val_loss: 0.0050
# Tahmin yapma
trainPredict = model.predict(X_train)
testPredict = model.predict(X_test)
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 43ms/step
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 22ms/step
# Ters ölçeklendirme
trainPredict_unscaled = scaler.inverse_transform(trainPredict.reshape((-1, 1)))
testPredict_unscaled = scaler.inverse_transform(testPredict.reshape((-1, 1)))
# Grafik için boş arrayler oluşturma
trainPredictPlot = np.empty_like(dataset, dtype=float)
trainPredictPlot[:] = np.nan
trainPredictPlot[window_size:len(trainPredict) + window_size] = trainPredict_unscaled.flatten()
testPredict_unscaled.shape
(26, 1)
testPredictPlot = np.empty_like(dataset, dtype=float)
testPredictPlot[:] = np.nan
testPredictPlot[len(trainPredict) + (window_size * 2):] = testPredict_unscaled.flatten()
# Gerçek veri ve tahminleri çizdirme
plt.plot(dataset, label="Gerçek Veri")
plt.plot(trainPredictPlot, label="Eğitim Tahminleri")
plt.plot(testPredictPlot, label="Test Tahminleri")
plt.legend()
plt.show()

png

Model 3

# Model oluşturma
model = keras.models.Sequential([
    keras.layers.Input(shape=(window_size,1)),
    keras.layers.SimpleRNN(32, activation='relu', return_sequences=True),
    keras.layers.SimpleRNN(32, activation='relu'),
    keras.layers.Dense(1)  # Çıkışta lineer aktivasyon
])

model.summary()
Model: "sequential_7"
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━┓
┃ Layer (type)                          Output Shape                         Param # ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━┩
│ simple_rnn_8 (SimpleRNN)             │ (None, 10, 32)              │           1,088 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ simple_rnn_9 (SimpleRNN)             │ (None, 32)                  │           2,080 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ dense_7 (Dense)                      │ (None, 1)                   │              33 │
└──────────────────────────────────────┴─────────────────────────────┴─────────────────┘
 Total params: 3,201 (12.50 KB)
 Trainable params: 3,201 (12.50 KB)
 Non-trainable params: 0 (0.00 B)
model.compile(optimizer = 'adam',
             loss = 'mse',
             metrics = ['accuracy'])
# Modeli eğitme
history = model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=100)
Epoch 1/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 3s 129ms/step - accuracy: 0.0155 - loss: 0.2326 - val_accuracy: 0.0000e+00 - val_loss: 0.8046
Epoch 2/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0155 - loss: 0.1510 - val_accuracy: 0.0000e+00 - val_loss: 0.5141
Epoch 3/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 15ms/step - accuracy: 0.0093 - loss: 0.0905 - val_accuracy: 0.0000e+00 - val_loss: 0.2790
Epoch 4/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 15ms/step - accuracy: 0.0062 - loss: 0.0417 - val_accuracy: 0.0000e+00 - val_loss: 0.0811
Epoch 5/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0311 - loss: 0.0162 - val_accuracy: 0.0000e+00 - val_loss: 0.0676
Epoch 6/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 15ms/step - accuracy: 0.0155 - loss: 0.0237 - val_accuracy: 0.0000e+00 - val_loss: 0.0559
Epoch 7/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 15ms/step - accuracy: 0.0217 - loss: 0.0140 - val_accuracy: 0.0000e+00 - val_loss: 0.0454
Epoch 8/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 15ms/step - accuracy: 0.0123 - loss: 0.0104 - val_accuracy: 0.0000e+00 - val_loss: 0.0736
Epoch 9/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0311 - loss: 0.0153 - val_accuracy: 0.0000e+00 - val_loss: 0.0587
Epoch 10/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 15ms/step - accuracy: 0.0155 - loss: 0.0104 - val_accuracy: 0.0000e+00 - val_loss: 0.0341
Epoch 11/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 15ms/step - accuracy: 0.0155 - loss: 0.0091 - val_accuracy: 0.0000e+00 - val_loss: 0.0361
Epoch 12/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 15ms/step - accuracy: 0.0123 - loss: 0.0121 - val_accuracy: 0.0000e+00 - val_loss: 0.0325
Epoch 13/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 15ms/step - accuracy: 0.0248 - loss: 0.0094 - val_accuracy: 0.0000e+00 - val_loss: 0.0385
Epoch 14/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 15ms/step - accuracy: 0.0155 - loss: 0.0093 - val_accuracy: 0.0000e+00 - val_loss: 0.0301
Epoch 15/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 15ms/step - accuracy: 0.0217 - loss: 0.0086 - val_accuracy: 0.0000e+00 - val_loss: 0.0304
Epoch 16/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 15ms/step - accuracy: 0.0155 - loss: 0.0097 - val_accuracy: 0.0000e+00 - val_loss: 0.0303
Epoch 17/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 15ms/step - accuracy: 0.0248 - loss: 0.0077 - val_accuracy: 0.0000e+00 - val_loss: 0.0362
Epoch 18/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 15ms/step - accuracy: 0.0248 - loss: 0.0088 - val_accuracy: 0.0000e+00 - val_loss: 0.0309
Epoch 19/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 15ms/step - accuracy: 0.0311 - loss: 0.0070 - val_accuracy: 0.0000e+00 - val_loss: 0.0264
Epoch 20/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 15ms/step - accuracy: 0.0155 - loss: 0.0072 - val_accuracy: 0.0000e+00 - val_loss: 0.0255
Epoch 21/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 15ms/step - accuracy: 0.0155 - loss: 0.0063 - val_accuracy: 0.0000e+00 - val_loss: 0.0263
Epoch 22/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 15ms/step - accuracy: 0.0196 - loss: 0.0067 - val_accuracy: 0.0000e+00 - val_loss: 0.0254
Epoch 23/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0155 - loss: 0.0068 - val_accuracy: 0.0000e+00 - val_loss: 0.0231
Epoch 24/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0217 - loss: 0.0066 - val_accuracy: 0.0000e+00 - val_loss: 0.0226
Epoch 25/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0155 - loss: 0.0062 - val_accuracy: 0.0000e+00 - val_loss: 0.0212
Epoch 26/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 15ms/step - accuracy: 0.0155 - loss: 0.0062 - val_accuracy: 0.0000e+00 - val_loss: 0.0204
Epoch 27/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 15ms/step - accuracy: 0.0217 - loss: 0.0053 - val_accuracy: 0.0000e+00 - val_loss: 0.0212
Epoch 28/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 15ms/step - accuracy: 0.0217 - loss: 0.0053 - val_accuracy: 0.0000e+00 - val_loss: 0.0190
Epoch 29/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 15ms/step - accuracy: 0.0311 - loss: 0.0053 - val_accuracy: 0.0000e+00 - val_loss: 0.0179
Epoch 30/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 15ms/step - accuracy: 0.0248 - loss: 0.0054 - val_accuracy: 0.0000e+00 - val_loss: 0.0202
Epoch 31/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 15ms/step - accuracy: 0.0217 - loss: 0.0057 - val_accuracy: 0.0000e+00 - val_loss: 0.0221
Epoch 32/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 16ms/step - accuracy: 0.0155 - loss: 0.0049 - val_accuracy: 0.0000e+00 - val_loss: 0.0178
Epoch 33/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 15ms/step - accuracy: 0.0217 - loss: 0.0069 - val_accuracy: 0.0000e+00 - val_loss: 0.0310
Epoch 34/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 15ms/step - accuracy: 0.0217 - loss: 0.0075 - val_accuracy: 0.0000e+00 - val_loss: 0.0177
Epoch 35/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 16ms/step - accuracy: 0.0155 - loss: 0.0051 - val_accuracy: 0.0000e+00 - val_loss: 0.0292
Epoch 36/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 17ms/step - accuracy: 0.0311 - loss: 0.0071 - val_accuracy: 0.0000e+00 - val_loss: 0.0221
Epoch 37/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 15ms/step - accuracy: 0.0248 - loss: 0.0055 - val_accuracy: 0.0000e+00 - val_loss: 0.0159
Epoch 38/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 15ms/step - accuracy: 0.0123 - loss: 0.0048 - val_accuracy: 0.0000e+00 - val_loss: 0.0159
Epoch 39/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 15ms/step - accuracy: 0.0123 - loss: 0.0046 - val_accuracy: 0.0000e+00 - val_loss: 0.0222
Epoch 40/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 15ms/step - accuracy: 0.0217 - loss: 0.0068 - val_accuracy: 0.0000e+00 - val_loss: 0.0233
Epoch 41/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 15ms/step - accuracy: 0.0311 - loss: 0.0070 - val_accuracy: 0.0000e+00 - val_loss: 0.0157
Epoch 42/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 15ms/step - accuracy: 0.0248 - loss: 0.0044 - val_accuracy: 0.0000e+00 - val_loss: 0.0144
Epoch 43/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 16ms/step - accuracy: 0.0186 - loss: 0.0044 - val_accuracy: 0.0000e+00 - val_loss: 0.0144
Epoch 44/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 15ms/step - accuracy: 0.0155 - loss: 0.0045 - val_accuracy: 0.0000e+00 - val_loss: 0.0130
Epoch 45/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 15ms/step - accuracy: 0.0123 - loss: 0.0038 - val_accuracy: 0.0000e+00 - val_loss: 0.0122
Epoch 46/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 15ms/step - accuracy: 0.0217 - loss: 0.0037 - val_accuracy: 0.0000e+00 - val_loss: 0.0113
Epoch 47/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 16ms/step - accuracy: 0.0248 - loss: 0.0036 - val_accuracy: 0.0000e+00 - val_loss: 0.0111
Epoch 48/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 16ms/step - accuracy: 0.0217 - loss: 0.0036 - val_accuracy: 0.0000e+00 - val_loss: 0.0111
Epoch 49/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 15ms/step - accuracy: 0.0248 - loss: 0.0033 - val_accuracy: 0.0000e+00 - val_loss: 0.0119
Epoch 50/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0248 - loss: 0.0036 - val_accuracy: 0.0000e+00 - val_loss: 0.0106
Epoch 51/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 15ms/step - accuracy: 0.0155 - loss: 0.0033 - val_accuracy: 0.0000e+00 - val_loss: 0.0100
Epoch 52/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 15ms/step - accuracy: 0.0123 - loss: 0.0032 - val_accuracy: 0.0000e+00 - val_loss: 0.0100
Epoch 53/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 15ms/step - accuracy: 0.0248 - loss: 0.0034 - val_accuracy: 0.0000e+00 - val_loss: 0.0119
Epoch 54/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 15ms/step - accuracy: 0.0311 - loss: 0.0033 - val_accuracy: 0.0000e+00 - val_loss: 0.0100
Epoch 55/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 15ms/step - accuracy: 0.0217 - loss: 0.0031 - val_accuracy: 0.0000e+00 - val_loss: 0.0140
Epoch 56/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 15ms/step - accuracy: 0.0248 - loss: 0.0046 - val_accuracy: 0.0000e+00 - val_loss: 0.0100
Epoch 57/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 15ms/step - accuracy: 0.0155 - loss: 0.0027 - val_accuracy: 0.0000e+00 - val_loss: 0.0101
Epoch 58/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 15ms/step - accuracy: 0.0155 - loss: 0.0030 - val_accuracy: 0.0000e+00 - val_loss: 0.0091
Epoch 59/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 15ms/step - accuracy: 0.0123 - loss: 0.0029 - val_accuracy: 0.0000e+00 - val_loss: 0.0124
Epoch 60/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0217 - loss: 0.0036 - val_accuracy: 0.0000e+00 - val_loss: 0.0116
Epoch 61/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 15ms/step - accuracy: 0.0248 - loss: 0.0032 - val_accuracy: 0.0000e+00 - val_loss: 0.0095
Epoch 62/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 15ms/step - accuracy: 0.0248 - loss: 0.0025 - val_accuracy: 0.0000e+00 - val_loss: 0.0076
Epoch 63/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 15ms/step - accuracy: 0.0248 - loss: 0.0025 - val_accuracy: 0.0000e+00 - val_loss: 0.0089
Epoch 64/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 15ms/step - accuracy: 0.0123 - loss: 0.0030 - val_accuracy: 0.0000e+00 - val_loss: 0.0086
Epoch 65/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0248 - loss: 0.0030 - val_accuracy: 0.0000e+00 - val_loss: 0.0087
Epoch 66/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0217 - loss: 0.0025 - val_accuracy: 0.0000e+00 - val_loss: 0.0075
Epoch 67/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 15ms/step - accuracy: 0.0155 - loss: 0.0027 - val_accuracy: 0.0000e+00 - val_loss: 0.0076
Epoch 68/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0186 - loss: 0.0025 - val_accuracy: 0.0000e+00 - val_loss: 0.0171
Epoch 69/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 15ms/step - accuracy: 0.0155 - loss: 0.0045 - val_accuracy: 0.0000e+00 - val_loss: 0.0094
Epoch 70/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 15ms/step - accuracy: 0.0217 - loss: 0.0021 - val_accuracy: 0.0000e+00 - val_loss: 0.0107
Epoch 71/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 15ms/step - accuracy: 0.0311 - loss: 0.0033 - val_accuracy: 0.0000e+00 - val_loss: 0.0089
Epoch 72/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 16ms/step - accuracy: 0.0186 - loss: 0.0027 - val_accuracy: 0.0000e+00 - val_loss: 0.0081
Epoch 73/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0155 - loss: 0.0023 - val_accuracy: 0.0000e+00 - val_loss: 0.0101
Epoch 74/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 15ms/step - accuracy: 0.0217 - loss: 0.0018 - val_accuracy: 0.0000e+00 - val_loss: 0.0090
Epoch 75/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 15ms/step - accuracy: 0.0217 - loss: 0.0033 - val_accuracy: 0.0000e+00 - val_loss: 0.0074
Epoch 76/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 15ms/step - accuracy: 0.0217 - loss: 0.0016 - val_accuracy: 0.0000e+00 - val_loss: 0.0133
Epoch 77/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 15ms/step - accuracy: 0.0248 - loss: 0.0035 - val_accuracy: 0.0000e+00 - val_loss: 0.0097
Epoch 78/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 15ms/step - accuracy: 0.0155 - loss: 0.0023 - val_accuracy: 0.0000e+00 - val_loss: 0.0083
Epoch 79/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 15ms/step - accuracy: 0.0155 - loss: 0.0025 - val_accuracy: 0.0000e+00 - val_loss: 0.0069
Epoch 80/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 15ms/step - accuracy: 0.0155 - loss: 0.0017 - val_accuracy: 0.0000e+00 - val_loss: 0.0072
Epoch 81/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 15ms/step - accuracy: 0.0123 - loss: 0.0022 - val_accuracy: 0.0000e+00 - val_loss: 0.0075
Epoch 82/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 15ms/step - accuracy: 0.0155 - loss: 0.0019 - val_accuracy: 0.0000e+00 - val_loss: 0.0055
Epoch 83/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 15ms/step - accuracy: 0.0248 - loss: 0.0014 - val_accuracy: 0.0000e+00 - val_loss: 0.0061
Epoch 84/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 15ms/step - accuracy: 0.0248 - loss: 0.0017 - val_accuracy: 0.0000e+00 - val_loss: 0.0058
Epoch 85/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 16ms/step - accuracy: 0.0155 - loss: 0.0014 - val_accuracy: 0.0000e+00 - val_loss: 0.0051
Epoch 86/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 15ms/step - accuracy: 0.0248 - loss: 0.0013 - val_accuracy: 0.0000e+00 - val_loss: 0.0052
Epoch 87/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 15ms/step - accuracy: 0.0217 - loss: 0.0014 - val_accuracy: 0.0000e+00 - val_loss: 0.0054
Epoch 88/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 16ms/step - accuracy: 0.0134 - loss: 0.0015 - val_accuracy: 0.0000e+00 - val_loss: 0.0052
Epoch 89/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 15ms/step - accuracy: 0.0311 - loss: 0.0013 - val_accuracy: 0.0000e+00 - val_loss: 0.0049
Epoch 90/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 15ms/step - accuracy: 0.0248 - loss: 0.0014 - val_accuracy: 0.0000e+00 - val_loss: 0.0066
Epoch 91/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 15ms/step - accuracy: 0.0123 - loss: 0.0015 - val_accuracy: 0.0000e+00 - val_loss: 0.0047
Epoch 92/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 15ms/step - accuracy: 0.0123 - loss: 0.0011 - val_accuracy: 0.0000e+00 - val_loss: 0.0049
Epoch 93/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 15ms/step - accuracy: 0.0248 - loss: 0.0011 - val_accuracy: 0.0000e+00 - val_loss: 0.0054
Epoch 94/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 15ms/step - accuracy: 0.0155 - loss: 9.7911e-04 - val_accuracy: 0.0000e+00 - val_loss: 0.0050
Epoch 95/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0155 - loss: 0.0010 - val_accuracy: 0.0000e+00 - val_loss: 0.0047
Epoch 96/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 15ms/step - accuracy: 0.0311 - loss: 9.3276e-04 - val_accuracy: 0.0000e+00 - val_loss: 0.0046
Epoch 97/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 16ms/step - accuracy: 0.0311 - loss: 8.3075e-04 - val_accuracy: 0.0000e+00 - val_loss: 0.0043
Epoch 98/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 15ms/step - accuracy: 0.0217 - loss: 8.7623e-04 - val_accuracy: 0.0000e+00 - val_loss: 0.0040
Epoch 99/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0248 - loss: 8.0767e-04 - val_accuracy: 0.0000e+00 - val_loss: 0.0046
Epoch 100/100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.0248 - loss: 8.3867e-04 - val_accuracy: 0.0000e+00 - val_loss: 0.0043
# Tahmin yapma
trainPredict = model.predict(X_train)
testPredict = model.predict(X_test)
# Ters ölçeklendirme
trainPredict_unscaled = scaler.inverse_transform(trainPredict.reshape((-1, 1)))
testPredict_unscaled = scaler.inverse_transform(testPredict.reshape((-1, 1)))
# Grafik için boş arrayler oluşturma
trainPredictPlot = np.empty_like(dataset, dtype=float)
trainPredictPlot[:] = np.nan
trainPredictPlot[window_size:len(trainPredict) + window_size] = trainPredict_unscaled.flatten()
testPredict_unscaled.shape
(26, 1)
testPredictPlot = np.empty_like(dataset, dtype=float)
testPredictPlot[:] = np.nan
testPredictPlot[len(trainPredict) + (window_size * 2):] = testPredict_unscaled.flatten()
# Gerçek veri ve tahminleri çizdirme
plt.plot(dataset, label="Gerçek Veri")
plt.plot(trainPredictPlot, label="Eğitim Tahminleri")
plt.plot(testPredictPlot, label="Test Tahminleri")
plt.legend()
plt.show()

png