Dersler

View on GitHub
import pandas as pd
arabalar = pd.Series(["BMW", "Toyota","Honda"])
arabalar
0       BMW
1    Toyota
2     Honda
dtype: object
renkler = pd.Series(["Kırmızı", "Mavi", "Sarı"])
renkler
0    Kırmızı
1       Mavi
2       Sarı
dtype: object
df = pd.DataFrame({"araba":arabalar, "renk": renkler})
df
araba renk
0 BMW Kırmızı
1 Toyota Mavi
2 Honda Sarı
df["araba"]
0       BMW
1    Toyota
2     Honda
Name: araba, dtype: object
# arac_satislar = pd.read_csv("https://raw.githubusercontent.com/mrdbourke/zero-to-mastery-ml/master/data/car-sales.csv")
arac_satislar = pd.read_excel("car-sales.xlsx")
arac_satislar
Make Colour Odometer (KM) Doors Price
0 Toyota White 150043 4 $4,000.00
1 Honda Red 87899 4 $5,000.00
2 Toyota Blue 32549 3 $7,000.00
3 BMW Black 11179 5 $22,000.00
4 Nissan White 213095 4 $3,500.00
5 Toyota Green 99213 4 $4,500.00
6 Honda Blue 45698 4 $7,500.00
7 Honda Blue 54738 4 $7,000.00
8 Toyota White 60000 4 $6,250.00
9 Nissan White 31600 4 $9,700.00
arac_satislar.describe()
Odometer (KM) Doors
count 10.000000 10.000000
mean 78601.400000 4.000000
std 61983.471735 0.471405
min 11179.000000 3.000000
25% 35836.250000 4.000000
50% 57369.000000 4.000000
75% 96384.500000 4.000000
max 213095.000000 5.000000
arac_satislar.columns
Index(['Make', 'Colour', 'Odometer (KM)', 'Doors', 'Price'], dtype='object')
arac_satislar.head(2)
Make Colour Odometer (KM) Doors Price
0 Toyota White 150043 4 $4,000.00
1 Honda Red 87899 4 $5,000.00
arac_satislar.tail(2)
Make Colour Odometer (KM) Doors Price
8 Toyota White 60000 4 $6,250.00
9 Nissan White 31600 4 $9,700.00
len(arac_satislar)
10
arac_satislar.shape
(10, 5)
arac_satislar.iloc[5:7]
Make Colour Odometer (KM) Doors Price
5 Toyota Green 99213 4 $4,500.00
6 Honda Blue 45698 4 $7,500.00
arac_satislar[["Make", "Price"]]
Make Price
0 Toyota $4,000.00
1 Honda $5,000.00
2 Toyota $7,000.00
3 BMW $22,000.00
4 Nissan $3,500.00
5 Toyota $4,500.00
6 Honda $7,500.00
7 Honda $7,000.00
8 Toyota $6,250.00
9 Nissan $9,700.00
arac_satislar[["Make", "Price"]].iloc[3:6]
Make Price
3 BMW $22,000.00
4 Nissan $3,500.00
5 Toyota $4,500.00
arac_satislar
Make Colour Odometer (KM) Doors Price
0 Toyota White 150043 4 $4,000.00
1 Honda Red 87899 4 $5,000.00
2 Toyota Blue 32549 3 $7,000.00
3 BMW Black 11179 5 $22,000.00
4 Nissan White 213095 4 $3,500.00
5 Toyota Green 99213 4 $4,500.00
6 Honda Blue 45698 4 $7,500.00
7 Honda Blue 54738 4 $7,000.00
8 Toyota White 60000 4 $6,250.00
9 Nissan White 31600 4 $9,700.00
arac_satislar["Odometer (KM)"]>100000
0     True
1    False
2    False
3    False
4     True
5    False
6    False
7    False
8    False
9    False
Name: Odometer (KM), dtype: bool
arac_satislar[arac_satislar["Odometer (KM)"]>100000]
Make Colour Odometer (KM) Doors Price
0 Toyota White 150043 4 $4,000.00
4 Nissan White 213095 4 $3,500.00
arac_satislar[(arac_satislar["Odometer (KM)"]<100000) & (arac_satislar["Doors"]==4)]
Make Colour Odometer (KM) Doors Price
1 Honda Red 87899 4 $5,000.00
5 Toyota Green 99213 4 $4,500.00
6 Honda Blue 45698 4 $7,500.00
7 Honda Blue 54738 4 $7,000.00
8 Toyota White 60000 4 $6,250.00
9 Nissan White 31600 4 $9,700.00
arac_satislar["Price"]=arac_satislar["Price"].str.replace("$","")
arac_satislar
Make Colour Odometer (KM) Doors Price
0 Toyota White 150043 4 4,000.00
1 Honda Red 87899 4 5,000.00
2 Toyota Blue 32549 3 7,000.00
3 BMW Black 11179 5 22,000.00
4 Nissan White 213095 4 3,500.00
5 Toyota Green 99213 4 4,500.00
6 Honda Blue 45698 4 7,500.00
7 Honda Blue 54738 4 7,000.00
8 Toyota White 60000 4 6,250.00
9 Nissan White 31600 4 9,700.00
arac_satislar["Price"]=arac_satislar["Price"].str.replace(".00","").str.replace(",","")
arac_satislar["Price"]=arac_satislar["Price"].astype(int)
arac_satislar.describe()
Odometer (KM) Doors Price
count 10.000000 10.000000 10.000000
mean 78601.400000 4.000000 7645.000000
std 61983.471735 0.471405 5379.407753
min 11179.000000 3.000000 3500.000000
25% 35836.250000 4.000000 4625.000000
50% 57369.000000 4.000000 6625.000000
75% 96384.500000 4.000000 7375.000000
max 213095.000000 5.000000 22000.000000
arac_satislar
Make Colour Odometer (KM) Doors Price
0 Toyota White 150043 4 4000
1 Honda Red 87899 4 5000
2 Toyota Blue 32549 3 7000
3 BMW Black 11179 5 22000
4 Nissan White 213095 4 3500
5 Toyota Green 99213 4 4500
6 Honda Blue 45698 4 7500
7 Honda Blue 54738 4 7000
8 Toyota White 60000 4 6250
9 Nissan White 31600 4 9700
pd.get_dummies(arac_satislar["Make"])
BMW Honda Nissan Toyota
0 False False False True
1 False True False False
2 False False False True
3 True False False False
4 False False True False
5 False False False True
6 False True False False
7 False True False False
8 False False False True
9 False False True False
df_one_hot_enc=pd.get_dummies(arac_satislar, columns=["Make","Colour"])
df_one_hot_enc
Odometer (KM) Doors Price Make_BMW Make_Honda Make_Nissan Make_Toyota Colour_Black Colour_Blue Colour_Green Colour_Red Colour_White
0 150043 4 4000 False False False True False False False False True
1 87899 4 5000 False True False False False False False True False
2 32549 3 7000 False False False True False True False False False
3 11179 5 22000 True False False False True False False False False
4 213095 4 3500 False False True False False False False False True
5 99213 4 4500 False False False True False False True False False
6 45698 4 7500 False True False False False True False False False
7 54738 4 7000 False True False False False True False False False
8 60000 4 6250 False False False True False False False False True
9 31600 4 9700 False False True False False False False False True
df_one_hot_enc = df_one_hot_enc.astype(int)
df_one_hot_enc
Odometer (KM) Doors Price Make_BMW Make_Honda Make_Nissan Make_Toyota Colour_Black Colour_Blue Colour_Green Colour_Red Colour_White
0 150043 4 4000 0 0 0 1 0 0 0 0 1
1 87899 4 5000 0 1 0 0 0 0 0 1 0
2 32549 3 7000 0 0 0 1 0 1 0 0 0
3 11179 5 22000 1 0 0 0 1 0 0 0 0
4 213095 4 3500 0 0 1 0 0 0 0 0 1
5 99213 4 4500 0 0 0 1 0 0 1 0 0
6 45698 4 7500 0 1 0 0 0 1 0 0 0
7 54738 4 7000 0 1 0 0 0 1 0 0 0
8 60000 4 6250 0 0 0 1 0 0 0 0 1
9 31600 4 9700 0 0 1 0 0 0 0 0 1
arac_satislar
Make Colour Odometer (KM) Doors Price
0 Toyota White 150043 4 4000
1 Honda Red 87899 4 5000
2 Toyota Blue 32549 3 7000
3 BMW Black 11179 5 22000
4 Nissan White 213095 4 3500
5 Toyota Green 99213 4 4500
6 Honda Blue 45698 4 7500
7 Honda Blue 54738 4 7000
8 Toyota White 60000 4 6250
9 Nissan White 31600 4 9700
df=arac_satislar
df.at[3,"Make"]="bmw"
df
Make Colour Odometer (KM) Doors Price
0 Toyota White 150043 4 4000
1 Honda Red 87899 4 5000
2 Toyota Blue 32549 3 7000
3 bmw Black 11179 5 22000
4 Nissan White 213095 4 3500
5 Toyota Green 99213 4 4500
6 Honda Blue 45698 4 7500
7 Honda Blue 54738 4 7000
8 Toyota White 60000 4 6250
9 Nissan White 31600 4 9700
df["Wheels"]=4
df
Make Colour Odometer (KM) Doors Price Wheels
0 Toyota White 150043 4 4000 4
1 Honda Red 87899 4 5000 4
2 Toyota Blue 32549 3 7000 4
3 bmw Black 11179 5 22000 4
4 Nissan White 213095 4 3500 4
5 Toyota Green 99213 4 4500 4
6 Honda Blue 45698 4 7500 4
7 Honda Blue 54738 4 7000 4
8 Toyota White 60000 4 6250 4
9 Nissan White 31600 4 9700 4
df=df.drop("Wheels", axis=1)
df
Make Colour Odometer (KM) Doors Price
0 Toyota White 150043 4 4000
1 Honda Red 87899 4 5000
2 Toyota Blue 32549 3 7000
3 bmw Black 11179 5 22000
4 Nissan White 213095 4 3500
5 Toyota Green 99213 4 4500
6 Honda Blue 45698 4 7500
7 Honda Blue 54738 4 7000
8 Toyota White 60000 4 6250
9 Nissan White 31600 4 9700
df=df.drop(3, axis=0)
df
Make Colour Odometer (KM) Doors Price
0 Toyota White 150043 4 4000
1 Honda Red 87899 4 5000
2 Toyota Blue 32549 3 7000
4 Nissan White 213095 4 3500
5 Toyota Green 99213 4 4500
6 Honda Blue 45698 4 7500
7 Honda Blue 54738 4 7000
8 Toyota White 60000 4 6250
9 Nissan White 31600 4 9700
df["Price"] = df["Price"].apply(lambda x: x*40)
df
Make Colour Odometer (KM) Doors Price
0 Toyota White 150043 4 160000
1 Honda Red 87899 4 200000
2 Toyota Blue 32549 3 280000
4 Nissan White 213095 4 140000
5 Toyota Green 99213 4 180000
6 Honda Blue 45698 4 300000
7 Honda Blue 54738 4 280000
8 Toyota White 60000 4 250000
9 Nissan White 31600 4 388000

for index, satir in df.iterrows():
    marka = satir["Make"]
    fiyat = satir["Price"]
    print(index, f"marka: {marka}, fiyat: {fiyat}")
0 marka: Toyota, fiyat: 160000
1 marka: Honda, fiyat: 200000
2 marka: Toyota, fiyat: 280000
4 marka: Nissan, fiyat: 140000
5 marka: Toyota, fiyat: 180000
6 marka: Honda, fiyat: 300000
7 marka: Honda, fiyat: 280000
8 marka: Toyota, fiyat: 250000
9 marka: Nissan, fiyat: 388000
df
Make Colour Odometer (KM) Doors Price
0 Toyota White 150043 4 160000
1 Honda Red 87899 4 200000
2 Toyota Blue 32549 3 280000
4 Nissan White 213095 4 140000
5 Toyota Green 99213 4 180000
6 Honda Blue 45698 4 300000
7 Honda Blue 54738 4 280000
8 Toyota White 60000 4 250000
9 Nissan White 31600 4 388000
import numpy as np
df.at[5, "Price"]=np.nan
df
Make Colour Odometer (KM) Doors Price
0 Toyota White 150043 4 160000.0
1 Honda Red 87899 4 200000.0
2 Toyota Blue 32549 3 280000.0
4 Nissan White 213095 4 140000.0
5 Toyota Green 99213 4 NaN
6 Honda Blue 45698 4 300000.0
7 Honda Blue 54738 4 280000.0
8 Toyota White 60000 4 250000.0
9 Nissan White 31600 4 388000.0
df=df.dropna()
df
Make Colour Odometer (KM) Doors Price
0 Toyota White 150043 4 160000.0
1 Honda Red 87899 4 200000.0
2 Toyota Blue 32549 3 280000.0
4 Nissan White 213095 4 140000.0
6 Honda Blue 45698 4 300000.0
7 Honda Blue 54738 4 280000.0
8 Toyota White 60000 4 250000.0
9 Nissan White 31600 4 388000.0
df.at[6,"Price"]=np.nan
df
Make Colour Odometer (KM) Doors Price
0 Toyota White 150043 4 160000.0
1 Honda Red 87899 4 200000.0
2 Toyota Blue 32549 3 280000.0
4 Nissan White 213095 4 140000.0
6 Honda Blue 45698 4 NaN
7 Honda Blue 54738 4 280000.0
8 Toyota White 60000 4 250000.0
9 Nissan White 31600 4 388000.0
df["Price"] = df["Price"].fillna(df["Price"].mean())
df
Make Colour Odometer (KM) Doors Price
0 Toyota White 150043 4 160000.000000
1 Honda Red 87899 4 200000.000000
2 Toyota Blue 32549 3 280000.000000
4 Nissan White 213095 4 140000.000000
6 Honda Blue 45698 4 242571.428571
7 Honda Blue 54738 4 280000.000000
8 Toyota White 60000 4 250000.000000
9 Nissan White 31600 4 388000.000000
df.sort_values(by=["Price"])
Make Colour Odometer (KM) Doors Price
4 Nissan White 213095 4 140000.000000
0 Toyota White 150043 4 160000.000000
1 Honda Red 87899 4 200000.000000
6 Honda Blue 45698 4 242571.428571
8 Toyota White 60000 4 250000.000000
2 Toyota Blue 32549 3 280000.000000
7 Honda Blue 54738 4 280000.000000
9 Nissan White 31600 4 388000.000000
df=df.sort_values(by=["Doors", "Price"], ascending=[False, True])
df
Make Colour Odometer (KM) Doors Price
4 Nissan White 213095 4 140000.000000
0 Toyota White 150043 4 160000.000000
1 Honda Red 87899 4 200000.000000
6 Honda Blue 45698 4 242571.428571
8 Toyota White 60000 4 250000.000000
7 Honda Blue 54738 4 280000.000000
9 Nissan White 31600 4 388000.000000
2 Toyota Blue 32549 3 280000.000000
fiyatlar=[100,200,300]
urunler=["1. urun", "2. urun", "3. urun"]
df=pd.DataFrame([fiyatlar,urunler])
df
0 1 2
0 100 200 300
1 1. urun 2. urun 3. urun
liste=[["1. urun", 100], ["2. urun", 200]]
df=pd.DataFrame(liste, columns=["Ürün Adı", "Fiyat"])
df
Ürün Adı Fiyat
0 1. urun 100
1 2. urun 200
sozluk= {"urun adı":["urun1","urun2"], "fiyat":[100,200]}
df=pd.DataFrame(sozluk)
df
urun adı fiyat
0 urun1 100
1 urun2 200
df.to_excel("yeni.xlsx")