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Machine Learning
Overview

Supervised Learning
Part 1




Supervised learning

J

output label

Learns from being given “right answers”
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Regression: Housing price prediction
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Linear Regression
with One Variable

Linear Regression
Model Part 1



House sizes and prices
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Regression model Supervised learning model
Predicts numbers Data has “right answers”
Infinitely many possible outputs




House sizes and prices

pricein $1000’s Data table
500 =
l400 size in feet? price in $1000’s
400
\ (2104 Caoo>
300 1416 232
200 1534 315
852 178
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Terminology
Training Data used to train the model

Notation:
set: X y x = “input” variable
size in feet? pricein $1000’s feature
@ 2104 y = “output” variable
(2) 1416 232 “target” variable
(3) 1534 315 m=437 m = number of training examples
(4) 822 1.?8 ( ) \/) = single training example
(47) 3210 870
(1) vz 00 (D) y ()
( (1)) y(l)) - ( ) L'-OO) (x@,y(")) = ith training example

2 index (1st, an, 3rd )
(2) ( ):,erz not exponent



Linear Regression
with One Variable

Linear Regression
Model Part 2
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fwp(x) =wx +b
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X linear
1 >

Linear regression with variable.

linear regression.



Linear Regression
with One Variable

Cost Function



Training set

targets
size in feet? (x) | price $1000's (y) Model: f,, ,(x) = wx + D
2104 460 ]
1416 237 W,b. parameters
1534 315 coefficients
852 178 weights

Whatdo w, b do?



1 t(x)=0°X+[.5

=15

1 2 3




y(i) =fW,b( (i)) <

fup (*®) = wx® + b

Maliyet Kare hatasl maliyet
fonksiyonu fonksiyonu

J(w.b)= Eﬁ\"i( AR (i)>2

N er r‘or‘
m = egitim ornekleri sayisi
1 S 2
J(w,b) = %z(fw,b( ) — y®)
i=1 TR

Find w, b:
7® js close to y® for all (+¥,y®),



Linear Regression
with One Variable

Cost Function
Intuition



model:

fwp () =wx+b
A

parameters: / £
>

w, b “

cost function:

1 < . .
J(w,b) = ﬁzl(fw,b () — y(y2

goal:
minimize J(w, b)
w,b

simplified
fw(x) = wx b=0@

w f

m L
1 . .
J =520 Gulx?) ~ )
=1 & (i)

minivmize J(w) WX



fw(x) ](W)
(for fixed w, function of x) (function of w)
input parameter
3 1 ®fw 3T
y —1 J(w) _
o T (har 11 JA=0
’” f(X)=y 2
0 ot : I-G——IA}(
_ 0 1 2 3 -0.5 1 5 2 2. 5
Wi m X 2 (v_lD
](W) 7(f (x®) =y = ZmZ(Wx(‘) y®? = % (0% 402402 )= 0

i=1 w,(('-)



fw(x)

(function of x)

37 X ful)

J(w)

(function of w)

X

FH————
05 0 05 1 15 2 25

m=3

w

|
J(0.5) = ‘z’_@[(o.s-l)zlr (1-2) =+ (1.5 —3)7‘] =3:3(3.5]= 3—2- ~0.58



fw(x) J(w)

(function of x) W=l 5.25
3 - fw
5 £
y J(w) J
11 w=0

O\{ 2 3 [05)0)@5 D 15 2 25

\ £(xy=-0.5X w
J(0) = -27;1(12"\' 25+ 3% ):\Z[M] =25 how to choose. w?



J(w)

(function of w)

goal of linear regression:

minimize J(w)
w

Ho— ——
@@C%) 15 2 25

choose w to minimize J(w)



Linear Regression
with One Variable

Visualizing
the Cost Function



Model fwp(x) =wx +b

Parameters w, b
1 m
Cost Function J(w,b) = %Z(fw,b(x(i)) — y)2
(=1

Objective mil}grglize J(w, b)



fw,b ]

(function of x) (function of w,b)
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fwp(x) = 0.06x + 50







J(w, b)
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3D surface plot

J(w, b)

[You can rotate this figure]
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Legend
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9 Mount Fuji

Google Earth
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Linear Regression
with One Variable

Visualization examples
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Training Linear
Regression

Gradient Descent



_ for linear regression
Have some function J(W,b) _¢ any function

Want mlgl](W, b) mln ](W1) WZ; "';WnJ b)
w,

W4, ...Wqn,b

Outline:
Start with some w,b  (set w=0, b=0)
Keep changing w, b to reduce j(w, b)

Until we settle at or near a minimum
Moy have >4 minimum
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Training Linear
Regression

Implementing
Gradient Descent



Gradient descent algorithm  Assignment

Repeat until convergence a=C
Learning rate

w = w-K jamj(w,la) Derivative o=+l

b = b-ot 5T (w,b)

Incorrect
0 0
tmp_wzw—a%](w,b) tmp_W—w—a%](w,b)

d _
tmp.b=>b — a%](w, b) W =1tmp_w

W = tmp_w tmp_b =b — a%](w, b)

b = tmp_b

b =tmp_b



Training Linear
Regression

Gradient Descent
Intuition



Gradient descent algorithm

repeat until convergence { ‘ W
learning rate \alaJ derivective J(w)

w=w—a—]J(w,Db)|< w=w-—-—a—J(w)

b—b—a—](w b)

Stanford onune @ Deeplearning.Al Andrew Ng
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Training Linear
Regression

Learning Rate



d
w=w _@E] (w)

If a is too small...

Gradient descent may be slow.

If a is too large...

Gradient descent may:
- Overshoot, never reach minimum

- Fail to converge, diverge

J(w)

minimum

>

:W\;

minimum



Jw) J/ /slope_=0

local minimum

>

W |
current value of w /75

W= W—a—](w) w=weal

wW=Ww



Can reach local minimum with fixed learning rate

A J(w)
w=w— a—](w)
<
Jw)
Near a local minimum,
o LN
- Derivative becomes smaller
- Update steps become smaller X
Can reach minimum without - >
decreasing learning rate « S Sw

minirmum

Stanford onune @ Deeplearning.Al Andrew Ng



Training Linear
Regression

Gradient Descent
for Linear Regression



Linear regression model Cost function
m

1 _ _
fw,b (x)=wx+b J(w,b) = %Z(fw'b(x(l)) — y(l))z

Gradient descent algorithm
repeat until convergence {

w=w— a—](w b) Z(fwb(x@) y©)x®

b=b>b-— a—](W b) \_Q_Z(f (x(l)) y @)
}






Gradient descent algorithm

45 J(w,b)
repeat until convergence {

m
1 . . .
w=w-— aaZ(fw,b (X(L)) - y(l)) x \ Update

¢ w and b
b b g 1 E(fwb(x(i)) _ y(i))\ simultaneously
= }

ggj(w,b)

}



More than one local minimum

Jw, b)




b owl SV\O\PQ. \\.

squared error cost

convex function

......
.....
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Training Linear
Regression

Running
Gradient Descent



fwp(size) J(w, b)
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fwp(size) J(w, b)
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fwp(size) J(w, b)
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fw,b (size)
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“Batch” gradient descent

“Batch”: Each step of gradient descent

uses all the training examples.
X y m=43% il
size in feet? price in $1000's \ > (f b(x(i)) _ y(i))z
W;

(1) 2104 400 —
(2) 1416 232
(3) 1534 315
(4) 852 178

(47) 3210 870




